федеральное государственное бюджетное образовательное учреждение высшего образования «Мордовский государственный педагогический университет имени М.Е. Евсевьева»

Факультет естественно-технологический Кафедра биологии, географии и методик обучения

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование дисциплины (модуля): Молекулярная биология
Уровень ОПОП: Бакалавриат
Направление подготовки: 44.03.05 Педагогическое образование (с двумя профилями подготовки)
Профиль подготовки: Биология. Химия
Форма обучения: Очная
Разработчики: Маскаева Т. А., канд. биол. наук, доцент,
Программа рассмотрена и утверждена на заседании кафедры, протокол № 13 от 16.04.2018 года
Зав. кафедрой Маскаева Т. А.
Программа с обновлениями рассмотрена и утверждена на заседании кафедры, протокол № 1 от 31.08.2020 года
Зав. кафедройМаскаева Т. А.

1. Цель и задачи дисциплины

Цель изучения дисциплины — обеспечить готовность студентов к использованию научных знаний из области молекулярной биологии, специальных умений и ценностных отношений в предстоящей профессиональной педагогической деятельности.

Задачи дисциплины:

- сформировать знания об основных закономерностях хранения, передачи и реализации наследственной информации на молекулярном уровне в клетке и природе в целом, методах познания материальных основ наследственности и изменчивости на молекулярном уровне;
- сформировать интегрированные и специальные умения в процессе изучения теоретического материала и выполнения лабораторного экспери-мента с учетом особенностей общего биологического образования;
- обеспечить овладение методами познания объектов молекулярной биологии, способами анализа молекулярных явлений для решения задач теоретического и прикладного характера с учетом возрастных особенностей обучающихся общеобразовательной школы.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Молекулярная биология» относится к вариативной части учебного плана.

Дисциплина изучается на 5 курсе, в 9 семестре.

Для изучения дисциплины требуется: знания биохимии, цитологии и генетики.

Изучению дисциплины «Молекулярная биология» предшествует освоение дисциплин (практик):

Генетика;

Биохимия;

Цитология.

Освоение дисциплины «Молекулярная биология» является необходимой основой для последующего изучения дисциплин (практик):

Современные проблемы изучения генетики человека;

Введение в биотехнологию.

Область профессиональной деятельности, на которую ориентирует дисциплина «Молекулярная биология», включает: образование, социальную сферу, культуру.

Освоение дисциплины готовит к работе со следующими объектами профессиональной деятельности:

- обучение;
- воспитание;
- развитие;
- образовательные системы.

В процессе изучения дисциплины студент готовится к видам профессиональной деятельности и решению профессиональных задач, предусмотренных $\Phi \Gamma OC$ ВО и учебным планом.

3. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование компетенций.

Выпускник должен обладать следующими профессиональными компетенциями (ПК) в соответствии с видами деятельности:

ПК-1. Готовностью реализовывать образовательные программы по учебным предметам в соответствии с требованиями образовательных стандартов.

педагогическая деятельность

ПК-1 готовностью реализовы-	знать:
вать образовательные програм-	- преподаваемый предмет в пределах требований ФГОС
мы по учебным предметам в со-	ООО в части биология по аспектам: 1) термины и понятия
ответствии с требованиями об-	молекулярной биологии; 2) ценности познания молекуляр-
разовательных стандартов	ной биологии; основные методы исследования; современные
	достижения молекулярной биологии;
	уметь:
	- использовать приобретенные знания для достижения пла-
	нируемых результатов биологического образования;
	владеть:
	- способами решения задач по молекулярной биологии тео-
	ретического и прикладного характера.

4. Объем дисциплины и виды учебной работы

	Всего ча-	Девятый-
Вид учебной работы	сов	семестр
Контактная работа (всего)	66	66
Лабораторные	40	40
Лекции	26	26
Самостоятельная работа (всего)	42	42
Виды промежуточной аттестации	36	36
Экзамен	36	36
Общая трудоемкость часы	144	144
Общая трудоемкость зачетные единицы	4	4

5. Содержание дисциплины

5.1. Содержание модулей дисциплины

Модуль 1. Молекулярная биология белков, нуклеиновых кислот:

Введение. История возникновения и развития молекулярной биологии. Предмет и задачи молекулярной биологии. Методы молекулярной биологии. Основной постулат молекулярной биологии. Белки: структура и функции. Уровни организации белков. Фолдинг белков. Стадии фолдинга белков. Шапероны. Распад белков. Структура нуклеиновых кислот: ДНК и РНК. Виды РНК. Структура мРНК. Структура тРНК. Структура рРНК. Геном эукариот. Структура эукариотических генов. Гены, кодирующие белки. Гены гистонов. Гены рРНК и тРНК. Последовательности нуклеотидов генома эукариот. Геном прокариот, вирусов и фагов. Плазмиды. Подвижные генетические элементы. Структура генов прокариот. Опероны.

Модуль 2. Этапы экспрессии генов. Апоптоз и некроз:

Репликация ДНК. Схема репликации у эукариот. Схема репликации у прокариот. Транскрипция ДНК у про- и эукариот. Отличия транскрипции от репликации. Механизм транскрипции. Продукты транскрипции. Процессинг РНК про- и эукариот. Схема процессинга. Механизм сплайсинга. Биосинтез белка. Генетический код, его свойства. Этапы трансляции, ее регуляция. Репарация ДНК. Типы повреждений ДНК. Апоптоз и некроз. Методы генетической инженерии.

5.2. Содержание дисциплины: Лекции (26 ч.)

Модуль 1. Молекулярная биология белков, нуклеиновых кислот (14 ч.)

Тема 1. Введение. (2 ч.)

Введение. История возникновения и развития молекулярной биологии. Белки: структура и функции. Предмет и задачи молекулярной биологии. Методы молекулярной биологии. История возникновения и развития молекулярной биологии. Основной постулат молекулярной биологии.

Тема 2. Белки. (2 ч.)

Аминокислотный состав белков. Функции. Уровни организации белков. Фолдинг белков. Стадии фолдинга белков. Шапероны. Распад белков.

Тема 3-4. Структура нуклеиновых кислот: ДНК и РНК. (4 ч.)

Структура нуклеиновых кислот: ДНК и РНК. Гистоны и организация ДНК в хромосомах. Структура ДНК в хромосомах. Полиморфизм ДНК. Сверспирализация ДНК. Структура РНК. Виды РНК. Структура мРНК. Структура тРНК. Структура рРНК.

Тема 5. Геном эукариот. (2 ч.)

Геном эукариот. Структура эукариотических генов. Гены, кодирующие белки. Гены гистонов. Гены рРНК и тРНК. Последовательности нуклеотидов генома эукариот. Особенности генома эукариот. Программа Геном человека.

Тема 6-7. Геном прокариот, вирусов и фагов. (4ч.)

Геном прокариот, вирусов и фагов. Особенности генома прокариот. Плазмиды. Подвижные генетические элементы. Структура генов прокариот. Опероны. Геном вирусов. Геном фагов.

Модуль 2. Этапы экспрессии генов. Апоптоз и некроз (14 ч.) Тема 8-9. Репликация ДНК. (4 ч.)

Основные принципы репликации. Особенности механизма репликации ДНК. Схема ре-

пликации у эукариот. Схема репликации у прокариот. Схема репликации у прокариот. Принципы транскрипции ДНК. Отличия транскрипции от репликации.

Тема 10. Транскрипция ДНК у про- и эукариот. (2 ч.)

Принципы транскрипции ДНК. Отличия транскрипции от репликации. Механизм транскрипции. Продукты транскрипции.

Тема 11. Процессинг РНК про- и эукариот. (2 ч.)

Схема процессинга. Механизм сплайсинга Механизм сплайсинга Процессинг у прокариот.

Тема 12. Биосинтез белка. (2 ч.)

Генетический код, его свойства. Строение рибосом. Инициация трансляции. Элонгация. Терминация.

Тема 10. Репарация ДНК. Апоптоз и некроз. (4 ч.)

Повреждения ДНК. Репарация ДНК, типы. Апоптоз. Морфологическая картина апоптоза. Некроз. Отличия апоптоза от некроза. Молекулярный механизм апоптоза. Онкогенез. Онкогены.

Тема 11. Генетическая инженерия (2 ч.)

Генная инженерия. Цели генной инженерии. История генной инженерии. Метод реконструирования и переноса рекомбинантных плазмид. Стадии метода. Синтез гена искусственным путём. Значение и перспективы генной инженерии.

5.3. Содержание дисциплины:

Лабораторные (40 ч.)

Модуль 1. Молекулярная биология белков, нуклеиновых кислот (20 ч.)

Тема 1. Методы молекулярной биологии (4 ч.) Вопросы для обсуждения:

- 1. Микроскопия.
- 2. Рентгеноструктурный анализ.
- 3. Метод радиоактивных изотопов.
- 4. Ультрацентрифугирование (седиментационный анализ).
- 5. Хроматография.
- 6. Электрофорез.
- 7. Изоэлектрофокусирование.
- 8. Двумерный электрофорез.
- 9. Культура клеток.
- 10. Метод бесклеточных систем.
- 11. Метод моноклональных антител.

Тема 2. Методы выделения нуклеиновых кислот (2 ч.) Вопросы для обсуждения:

- 1. Выделение ДНК. Подготовка образцов для выделения ДНК.
- 2. Выделение высокомолекулярной ДНК. Выделение РНК.
- 3. Выделение РНК с использованием протеиназы К.

Тема 3. Белки и их функции (2 ч.) Вопросы для обсуждения:

1. Функции белков.

- 1. Функции ослков.
- 2. Аминокислотный состав белков.
- 3. Структурная организация белков.
- 4. Свойства белков.
- 5. Фолдинг белков. Шапероны.

Тема 4. Нуклеиновые кислоты (2 ч.)

Вопросы для обсуждения:

- 1. История открытия и изучения нуклеиновых кислот
- 2. Компоненты нуклеиновых кислот.
- 3. Структура и функции ДНК.
- 4. Сверхспирализация ДНК.
- 5. Структура и функции РНК.
- 6. Виды РНК.
- 7. Решение задач.

Тема 5. Структура геном вирусов и фагов. Геном прокариот (4 ч.) Вопросы для обсуждения:

- 1. Особенности генома вирусов и фагов.
- 2. ДНК-содержащие вирусы
- 3. РНК-содержащие вирусы.
- 4. Вирус иммунодефицита человека.
- 1.Общая характеристика генома прокариот.
- 2. Структура генома прокариот.
- 3. Структура генов прокариот.
- 4. Плазмиды.
- 5. Мобильные генетические элементы.
- 6. Опероны.

Тема 6. Геном эукариот (2 ч.)

Вопросы для обсуждения:

- 1. Геном эукариот: общие сведения.
- 2. Последовательности нуклеотидов генома эукариот.
- 3. Структура эукариотических генов.
- 4. Особенности генома человека.
- 5. Геном митохондрий.
- 6. Геном пластил.

Тема 7. Межмолекулярные взаимодействия (2 ч.)

Вопросы для обсуждения:

- 1. Белково-нуклеиновые взаимодействия.
- 2. Белок-белковые взаимодействия.
- 3. Сигнализация.
- 4. Теломераза и старение.

Тема 8. Контрольная работа по модулю 1. (2 ч.)

Контрольная работа

Модуль 2. Этапы экспрессии генов. Апоптоз и некроз (20 ч.)

Тема 9. Репликация ДНК (2 ч.)

Вопросы для обсуждения:

- 1. Особенности репликации ДНК.
- 2. Характеристика ферментов.
- 3. Этапы репликации.

Тема 10. Транскрипция ДНК. Процессинг РНК (2 ч.)

Вопросы для обсуждения:

- 1. Принципы транскрипции. Отличие транскрипции от репликации.
- 2. Характеристика ферментов.
- 3. Стадии транскрипции.
- 4. Обратная транскрипция.
- 5. Продукты транскрипции.
- 6. Кэпирование.
- 7. Полиаденилирование.
- 8. Сплайсинг.
- 9. Особенности процессинга тРНК и рРНК у прокариот и эукариот.

Тема 11. Трансляция. Посттрансляционные изменения белков (2 ч.) Вопросы для обсуждения:

- 1. Свойства генетического кода.
- 2. Строение рибосом.
- 3. Механизм трансляции.
- 4. Посттрансляционные изменения белков.

Тема 12. Репарация ДНК (2 ч.)

Вопросы для обсуждения:

- 1. Возможные повреждения ДНК.
- 2. Репарация ДНК, типы.

Тема 13. Апоптоз и некроз (4 ч.)

Вопросы для обсуждения:

- 1. Факторы апоптоза. Характерные признаки апоптоза.
- 2. Молекулярные механизмы апоптоза.
- 3. Факторы некроза. Морфологические признаки некроза.
- 4. Механизм некроза.
- 5. Отличия апоптоза и некроза.
- 6. Онкогенез.
- 7. Онкогены.

Тема 14. Генетическая инженерия (4 ч.)

Вопросы для обсуждения:

- 1. Технология получения рекомбинантных ДНК
- 2. Гибридизация нуклеиновых кислот.
- 3. Определение нуклеотидных последовательностей.
- 4. Химический синтез гена.
- 5. Достижения и перспективы генетической инженерии.

Тема 15. Защита рефератов (2 ч.)

Темы рефератов:

- 1. Молекулярная биология и медицина.
- 2. Псевдогены: структура, эволюция, биологическое значение.
- 3. Болезни человека, обусловленное наследственными дефектами репарационных систем.

Тема 16. Контрольная работа по модулю 2 (2 ч.)

Контрольная работа.

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

6.1 Вопросы и задания для самостоятельной работы

Девятый семестр (42 ч.)

Модуль 1. Молекулярная биология белков, нуклеиновых кислот (21 ч.)

Вид СРС: Подготовка к практическим / лабораторным занятиям

- 1. Гемоглобин крови человека содержит 0,34 % железа. Вычислите минимальную молекулярную массу гемоглобина.
- 2. Альбумин сыворотки крови человека имеет молекулярную массу 68 400. Определите количество аминокислотных остатков в молекуле этого белка.
- 3. Белок содержит 0,5 глицина. Чему равна минимальная молекулярная масса этого белка, если $M_{\text{глицина}} = 75,1?$ Сколько аминокислотных остатков в этом белке?
- 4. При некоторых заболеваниях у больного повышается температура тела, что рассматривают как защитную реакцию организма. Однако высокие температуры губительны для белков организма. Объясните, почему при температуре выше 40° С нарушается функция белков и возникает угроза для жизни человека. Для этого вспомните: а) строение белков и связи, удерживающие его структуру в нативной конформации; б) как меняется структура и функция белков при повышении температуры?
- 5. Фрагмент молекулы ДНК состоит из 6000 нуклеотидов. Определите длину данного фрагмента ДНК.

- 6. Фрагмент молекулы ДНК состоит из 3000 нуклеотидов, из них цитидиловых нуклеотидов 650. Определите длину данного фрагмента и количество адениловых, тимидиловых и гуаниловых нуклеотидов.
- 7. Фрагмент молекулы ДНК состоит из 950 пар нуклеотидов, из них адениловых нуклеотидов 340. Определите длину данного фрагмента и количество гуаниловых, тимидиловых и цитидиловых нуклеотидов.
- 8. Определите количество водородных связей во фрагменте ДНК ТЦГАГТА-ЦЦТАТГАТЦЦЦ.
- 9. Молекула ДНК состоит из 4000 нуклеотидов. Определите число полных спиральных витков в данной молекуле.
- 10. Длина участка молекулы ДНК составляет 850 нм. Определите количество нуклеотидов в одной цепи ДНК.
- $11.\ \mathrm{B}$ молекуле ДНК $28\ \%$ тимидиловых нуклеотидов. Определите количество адениловых нуклеотидов.
- 12. Фрагмент молекулы ДНК состоит из 1000 нуклеотидов, из них адениловых нуклеотидов 23 %. Определите количество гуаниловых, тимидиловых и цитидиловых нуклеотидов.
- 13. Определите молекулярную массу фрагмента ДНК, если он состоит из 900 нуклеотидов.
- 14. Назовите и изобразите в виде рисунков разнообразие форм структуры ДНК- и РНК-геномов вирусов.
 - 15. Составьте общую схему функциональной организации вирусных геномов.
- 16. Изучается работа оперона бактерий. Произошло освобождение гена оператора от белка-репрессора. Какой процесс после этого начинается?
- 17. В последнее время установлено у эукариот наличие в молекуле ДНК нуклеотидных последовательностей, которые увеличивают скорость транскрипции. Как называются эти активаторы транскрипции: а) экзоны; б) траспозоны; в) энхансеры; г) интроны; д) кодоны?
- 18. Одним из главных условий жизни есть постоянные превращения химических веществ метаболизм, который регулируется количественным составом и активностью ферментов. Какие молекулярные структуры контролируют синтез этих белков-ферментов: а) структурные гены; б) гены-регуляторы; в) коастеры генов; г) тамдемные гены; д) гены сателлитной ДНК?

Модуль 2. . Этапы экспрессии генов. Апоптоз и некроз (21 ч.) Вид СРС: Подготовка к практическим / лабораторным занятиям

1. Фрагмент ДНК имеет следующий состав нуклеотидов:

АТГЦЦГТГЦ

ТАЦГГЦАЦГ

Напишите состав нуклеотидов дочерних цепей, образовавшихся в процессе репликации данного фрагмента. Укажите старые и новые нуклеотидные це-пи.

- 2. В каком виде, и каких органоидах хранится информация о белках в клетках эукариот?
 - 3. Какой фермент отвечает за образование комплементарной цепи ДНК?
 - 4. Что является матрицей при удвоении ДНК?
- 5. В молекуле ДНК миллион нуклеотидов. Сколько нуклеотидов потребуется при репликации (удвоении) ДНК?
- 6. Одна из цепей фрагмента ДНК имеет следующую последователь-ность нуклеотидов: 3'...АТТГГЦАТГ...5' Напишите последовательность комплементарной цепи, укажите 3'- и 5'- концы.

- 7. Фрагмент ДНК содержит 2 000 000 нуклеотидов. В одной цепи нуклеотидов количество А-нуклеотидов 30 %, Γ 20 %, Ц-нуклеотидов 40 %. Сколько каких нуклеотидов потребуется при репликации данного фрагмента?
- 8. Участок одной цепи молекулы ДНК имеет следующее строение А-Ц-Ц-Т-А-Г-Т-Ц-Ц-А-А-Г-Г-А-Т. Достройте вторую цепь ДНК. Покажите, как произойдет репликация ДНК. Какое количество водородных связей удерживают данный участок молекулы ДНК?
 - 9. Выберите правильные утверждения:
- а) Направление движения РНК-полимеразы зависит от связывания с промотором, а выбор матричной цепи от дополнительных белковых факторов.
- б) В любом месте двойной спирали ДНК только одна цепь ДНК обычно используется как матрица.
- в) В клетках бактерий транскрипцию РНК всех классов осуществляет РНКполимераза одного типа, тогда как в клетках эукариот используются три разных типа РНК-полимераз.
 - 10. Запишите транскрипцию цепи ДНК АГА-ТАТ-ТГТ-ТЦТ.
- 11. Запишите обратную транскрипцию цепи РНК ГЦГ-АЦА-УУУ-УЦГ-ЦГУ-АГУ-АГА.
- 12. Фрагмент и-РНК имеет следующую последовательность нуклеоти-дов УГАГЦАУЦАГАЦУГУ. Определите последовательность нуклеотидов фрагмента молекулы ДНК с которой транскрибирован данный фрагмент и-РНК.
- 13. Фрагмент и-РНК имеет следующую последовательность нуклеоти-дов УА-УЦГАГУЦАЦГЦ. Определите последовательность нуклеотидов и число водородных связей во фрагменте молекулы ДНК с которой транскрибирован данный фрагмент и-РНК.
- 14. Одна нить молекулы ДНК, выделенной из бактерии Е. coli, имеет последовательность 5'-GTAGCCTACCCATAGG-3'. Какова будет последовательность мРНК, транскрибируемой с этой молекулы ДНК?
- 15. При сплайсинге эукариотической мРНК произошло ошибочное удаление вместе с интроном двух нуклеотидов одного из экзонов внутри гена. К каким последствиям это приведет на уровне молекулы соответствующего белка?
- 16. Участок молекулы белка имеет следующую последовательность аминокислот: серин-глутамин-аспаригин-триптофан. Определите возможные последовательности нуклеотидов в молекуле и-РНК.
- 17. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: УГЦААГЦУГУУУАУА. Определите последовательность ами-нокислот в молекуле белка.
- 18. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГЦАУГУАГЦААГЦГЦ. Определите последовательность ами-нокислот в молекуле белка и её молекулярную массу.
- 19. В последнее время все большее число молодежи посещает солярии, аргументируя свои действия тем, что солнечный свет полезен для здоровья. Многие из них даже не догадываются, к каким последствиям может привести УФО при чрезмерном увлечении солнечными ваннами. Укажите, какие повреждения в ДНК фибробластов кожи может вызывать УФ-облучение и как они устраняются в норме. Для этого:
- а) напишите схему процесса, который обеспечивает восстановление нативной структуры ДНК;
- б) назовите заболевания, которые могут возникнуть у пациентов с недостаточностью ферментов этого процесса.

7. Тематика курсовых работ

Курсовые работы (проекты) по дисциплине не предусмотрены.

8. Оценочные средства для промежуточной аттестации

8.1. Компетенции и этапы формирования

Коды компетенций	Этапы формирования		
	Курс, се-	Форма	Модули (разделы) дисциплины
	местр	контроля	
ПК-1	5 курс,	Экзамен	Модуль 1:
	Девятый		Молекулярная биология белков, нуклеиновых
	семестр		кислот.
ПК-1	5 курс,	Экзамен	Модуль 2:
	Девятый		Этапы экспрессии генов. Апоптоз и некроз.
	семестр		

Сведения об иных дисциплинах, участвующих в формировании данных компетенций:

Компетенция ПК-1 формируется в процессе изучения дисциплин:

Адаптационные возможности растений, Аналитическая химия, Анатомия и морфология человека, Биогеография, Биологические основы сельского хозяйства, Биотехнологические производства Республики Мордовия, Биохимия, Ботаника, Валеологические аспекты питания, Введение в биотехнологию, Вторичные метаболиты растений, Генетика, Гистология, Диетология и лечебное питание, Зоология, Количественные расчеты по химии, Коллоидная химия, Лабораторный практикум по биохимии, Методика обучения биологии, Методика обучения химии, Методы приемы решения задач ЕГЭ по химии, Микробиология, Микроорганизмы и здоровье, Молекулярные основы наследственности, Неорганический синтез, Общая и неорганическая химия, Общая экология, Органическая химия, Органический синтез, Основы антропологии, Основы биоорганической химии, Основы геоморфологии, Основы школьной гигиены, Подготовка к сдаче и сдача государственного экзамена, Подготовка учащихся к ГИА и ЕГЭ по биологии, Прикладная химия, Санитарная и пищевая микробиология, Современные подходы в обучении химии, Современные проблемы биотехнологии, Современные проблемы изучения генетики человека, Современные технологии в процессе преподавания химии, Социальная экология и рациональное природопользование, Строение молекул и основы квантовой химии, Теория эволюции, Физиология растений, Физиология человека, Физическая химия, Фитодизайн, Флористика, Химия высокомолекулярных соединений, Химия металлов, Химия неметаллов, Химия окружающей среды, Химия полимеров, Цитология, Этнокультурный компонент школьной биологии.

8.2. Показатели и критерии оценивания компетенций, шкалы оценивания

В рамках изучаемой дисциплины студент демонстрирует уровни овладения компетенциями:

Повышенный уровень:

знает и понимает теоретическое содержание дисциплины; творчески использует ресурсы (технологии, средства) для решения профессиональных задач; владеет навыками решения практических задач.

Базовый уровень:

знает и понимает теоретическое содержание; в достаточной степени сформированы умения применять на практике и переносить из одной научной области в другую теоретические знания; умения и навыки демонстрируются в учебной и практической деятельности; имеет навыки оценивания собственных достижений; умеет определять проблемы и потребности в конкретной области профессиональной деятельности.

Пороговый уровень:

понимает теоретическое содержание; имеет представление о проблемах, процессах, явлениях; знаком с терминологией, сущностью, характеристиками изучаемых явлений; демонстрирует практические умения применения знаний в конкретных ситуациях профессиональной деятельности.

Уровень ниже порогового:

демонстрирует студент, обнаруживший пробелы в знаниях основного учебно-программного материала, допускающий принципиальные ошибки в выполнении предусмотренных программой заданий, не способный продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Уровень сформиро-	Шкала оценивания для про	Шкала оценивания	
ванности компетен-	ции	по БРС	
ции	Экзамен (дифференциро-	Зачет	
	ванный зачет)		
Повышенный	5 (отлично)	зачтено	90 – 100%
Базовый	4 (хорошо)	зачтено	76 – 89%
Пороговый	3 (удовлетворительно)	зачтено	60 – 75%
Ниже порогового	2 (неудовлетворительно)	незачтено	Ниже 60%

Критерии оценки знаний студентов по дисциплине

Оценка	Показатели
Хорошо	Студент знает: структуру и функции биополимеров, их компонентов и
	комплексов, механизмы хранения, передачи и реализации генетиче-
	ской информации на молекулярном уровне; детальную характеристи-
	ку основных процессов, протекающих в живой клетке: репликации,
	транскрипции, трансляции, рекомбинации, репарации, процессинга
	РНК и белков, белкового фолдинга; основные способы межмолеку-
	лярных взаимодействий и взаимную регуляцию процессов функцио-
	нирования живой клетки в составе многоклеточного организма. Одна-
	ко допускаются одна-две неточности в ответе.
	Студент дает логически выстроенный, достаточно полный ответ по
	вопросу.
Неудовлетворительно	Студент демонстрирует незнание основного содержания дисциплины,
	обнаруживая существенные пробелы в знаниях учебного материала,
	допускает принципиальные ошибки в выполнении предлагаемых за-
	даний; затрудняется делать выводы и отвечать на дополнительные во-
	просы преподавателя.
1 -	Допускается несколько ошибок в содержании ответа при этом ответ
	отличается недостаточной глубиной и полнотой раскрытия темы.
	Студент знает: структуру и функции биополимеров, их компонентов и
	комплексов, механизмы хранения, передачи и реализации генетиче-
	ской информации на молекулярном уровне; детальную характеристи-
	ку основных процессов, протекающих в живой клетке: репликации,
	транскрипции, трансляции, рекомбинации, репарации, процессинга
	РНК и белков, белкового фолдинга и докинга; основные способы
	межмолекулярных взаимодействий и взаимную регуляцию процессов
	функционирования живой клетки в составе многоклеточного организ-
	ма. Ответ логичен и последователен, отличается глубиной и полнотой
	раскрытия темы, выводы доказательны.

8.3. Вопросы, задания текущего контроля

Модуль 1: Молекулярная биология белков, нуклеиновых кислот

ПК-1 готовностью реализовывать образовательные программы по учебным предметам в соответствии с требованиями образовательных стандартов

- 1. Решите задачу и охарактеризуйте особенности строения вторичной структуры ДНК. Две цепи ДНК удерживаются друг против друга водородными связями. Определите число двойных и тройных водородных связей этой цепи ДНК, если известно, что нуклеотидов с тимином 18, с цитозином 32 в обеих цепях ДНК. Перечислите основные понятия, формируемые при изучении темы «Нуклеиновые кислоты и их роль в жизнедеятельности клетки. Строение и функции ДНК» в школьном курсе биологии.
- 2. Решите задачу и перечислите основные понятия, формируемые при изучении темы «Строение и функции РНК» в школьном курсе биологии. Какое строение будет иметь молекула и-РНК, если порядок нуклеотидов в цепочке гена, на котором она синтезируется, имеет следующую последовательность: ГТГТААЦГАЦЦГАТАТТТГТА? Какова длина молекулы ДНК, если длина одного нуклеотида 0,34 нм?
- 3. Охарактеризуйте уровни организации белковой молекулы и сравните их характерное положение в пространстве. Перечислите основные понятия, формируемые при изучении темы «Аминокислоты, белки. Строение белков. Уровни организации белковой молекулы» в школьном курсе биологии.
- 4. Исследования показали, что в и-РНК содержится 34% гуанина, 18% урацила, 28% цитозина и 20% аденина. 1. Определите процентный состав азотистых оснований в участке ДНК, являющейся матрицей для данной и-РНК. 2. Охарактеризуйте виды РНК.
- 5. Ген состоит из 3 одинаковых смысловых (экзоны) и 4 одинаковых несмысловых (интроны) участков, причем интроны состоят из 120 нуклеотидов каждый, а весь ген имеет 1470 нуклеотидов. 1. Сколько кодонов будет иметь про-мРНК, каждый экзон, мРНК и белок, закодированный в этом гене? 2. Назовите особенности строения гена эукариот.

Модуль 2: Этапы экспрессии генов. Апоптоз и некроз

ПК-1 готовностью реализовывать образовательные программы по учебным предметам в соответствии с требованиями образовательных стандартов

- 1. Покажите, как отразится на последующей трансляции добавление аденилового нуклеотида к началу данной кодирующей последовательности: 5/ АУГ ГУГ ЦАГ АЦУ ГАГ ГАЦ ЦАЦ
- 2. Определите направление синтеза и нуклеотидную последовательность каждой из двух дочерних нитей, которые возникнут при репликации приведённого ниже двухцепочечного фрагмента ДНК:3/ A-Г-Т-Ц-Т-Т-Г-Ц-А-5/ 5/ Т-Ц-А-Г-А-А-Ц-Г-Т-3/. Перечислите основные понятия, формируемые при изучении темы «Генетический код. Транскрипция» в школьном курсе биологии.
- 3. Запишите все варианты фрагментов мРНК, которые могут кодировать следующий фрагмент полипептида: Фен Мет Цис. Перечислите основные понятия, формируемые при изучении темы «Генетический код. Трансляция» в школьном курсе биологии.
- 4. Определите структуру участка молекулы ДНК, кодирующего синтезируемый на рибосоме полипептид. В рибосому последовательно поступают тРНК со следующими антикодонами: УУА, ГЦА, ГГА, ЦУУ. Перечислите основные понятия, формируемые при изучении темы «Регуляция транскрипции и трансляция в клетке» в школьном курсе биологии.
- 5. Полипептид содержит следующие аминокислоты: метионин, триптофан, лизин, триптофан, валин. Определите антикодоны тРНК, принимающие участие в синтезе этого белка. Перечислите основные понятия, формируемые при изучении темы «Взаимосвязь строения и жизнедеятельности клеток» в школьном курсе биологии.

8.4. Вопросы промежуточной аттестации

Девятыйсеместр (Экзамен, ПК-1)

- 1. Охарактеризуйте предмет и задачи молекулярной биологии, связь с другими науками.
 - 2. Назовите и охарактеризуйте физические методы молекулярной биологии.
 - 3. Назовите и охарактеризуйте химические методы молекулярной биологии.
- 4. Назовите и охарактеризуйте биологические и биохимические методы молекулярной биологии.
 - 5. Охарактеризуйте понятие полимеразная цепная реакция: стадии, применение.
- 6. Охарактеризуйте основные этапы истории возникновения и развития молекулярной биологии.
 - 7. Охарактеризуйте основной постулат молекулярной биологии.
- 8. Назовите аминокислотный состав и функции белков. Охарактеризуйте первичную структуру белка.
- 9. Охарактеризуйте вторичную и сверхвторичную структуры белка. Домены: структура и функции.
- 10. Охарактеризуйте третичную структуру белка. Дайте определение понятиям: денатурация и ренатурация белков. Охарактеризуйте четвертичную структуру белка.
- 11. Охарактеризуйте фолдинг белков, стадии фолдинга. Шапероны: структура и функции. Распад белков.
- 12. Охарактеризуйте первичную и вторичную структуры ДНК (модель Уотсона-Крика). Правила Чаргаффа и принцип комплементарности азотистых оснований. Возможные конформации ДНК: A, B и Z формы.
 - 13. Охарактеризуйте сверхспирализацию ДНК. Топоизомеразы.
 - 14. Охарактеризуйте структуру РНК. Функции.
- 15. Назовите виды РНК. Охарактеризуйте малые ядерные и малые цитоплазматические РНК.
 - 16. Охарактеризуйте структуру и функции мРНК.
 - 17. Охарактеризуйте структуру и функции тРНК.
 - 18. Охарактеризуйте структуру и функции рРНК.
 - 19. Охарактеризуйте концепцию «Мир РНК».
 - 20. Охарактеризуйте особенности генома эукариот.
 - 21. Охарактеризуйте структуру эукариотических генов.
 - 22. Назовите гены, кодирующие белки. Охарактеризуйте гены гистонов.
 - 23. Охарактеризуйте гены рРНК и тРНК.
 - 24. Охарактеризуйте последовательности нуклеотидов генома эукариот.
 - 25. Охарактеризуйте онкогены и антионкогены.
- 26. Охарактеризуйте программу «Геном человека». Изобразите схематично и охарактеризуйте структуру генома человека.
- 27. Охарактеризуйте геномы митохондрий. Репликация и полиморфизм митохондриальной ДНК.
 - 28. Охарактеризуйте ДНК хлоропластов. Происхождение ДНК органелл.
 - 29. Назовите особенности генома прокариот.
- 30. Охарактеризуйте подвижные генетические элементы прокариотического генома.
 - 31. Охарактеризуйте структуру генов прокариот.
 - 32. Охарактеризуйте строение оперона бактерий и его типы.
 - 33. Охарактеризуйте работу лактозного оперона.
 - 34. Охарактеризуйте работу триптофанового оперона.
 - 35. Назовите особенности генома вирусов.
 - 36. Охарактеризуйте ДНК- и РНК-содержащие вирусы.

- 37. Охарактеризуйте структуру и цикл развития вируса иммунодефицита человека.
- 38. Охарактеризуйте основные принципы репликации ДНК.
- 39. Охарактеризуйте особенности механизма репликации ДНК.
- 40. Назовите особенности репликации ДНК у прокариот.
- 41. Охарактеризуйте репликацию ДНК у эукариот.
- 42. Назовите принципы транскрипции. Назовите отличия транскрипции от репликации.
 - 43. Охарактеризуйте механизм транскрипции. Регуляция транскрипции.
 - 44. Назовите подукты транскрипции у эукариот и прокариот.
 - 45. Охарактеризуйте механизм процессинга.
 - 46. Охарактеризуйте процессинг тРНК и рРНК у эукариот.
 - 47. Охарактеризуйте механизм сплайсинга. Альтернативный сплайсинг.
 - 48. Охарактеризуйте генетический код, его свойства.
 - 49. Охарактеризуйте этапы трансляции.
 - 50. Охарактеризуйте понятие репарация ДНК и её виды.
- 51. Назовите причины апоптоза и охарактеризуйте данное понятие. Назовите основные отличия апоптоза от некроза.
 - 52. Охарактеризуйте молекулярные механизмы апоптоза.
- 53. Охарактеризуйте следующие методы генетической инженерии: рестрикция ДНК, гибридизация нуклеиновых кислот, клонирование ДНК.
- 54. Охарактеризуйте следующие методы генетической инженерии: химический синтез гена, получение биологически активных соединений, получение трансгенных растений.
- 55. Охарактеризуйте межмолекулярные взаимодействия: белок-белковые взаимодействия, белково-нуклеиновые взаимодействия, белково-липидные взаимодействия.
- 56. Назовите основные типы межклеточной химической сигнализация и охарактеризуйте.
- 57. Охарактеризуйте метилирование ДНК. Охарактеризуйте теломерные последовательности ДНК.

8.5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Промежуточная аттестация проводится в форме экзамена.

Экзамен по дисциплине или ее части имеет цель оценить сформированность компетенций, теоретическую и практическую подготовку студента, его способность к творческому мышлению, приобретенные им навыки самостоятельной работы, умение синтезировать полученные знания и применять их при решении практических задач.

При балльно-рейтинговом контроле знаний итоговая оценка выставляется с учетом набранной суммы баллов.

Устный ответ на экзамене

При определении уровня достижений студентов на экзамене необходимо обращать особое внимание на следующее:

- дан полный, развернутый ответ на поставленный вопрос;
- показана совокупность осознанных знаний об объекте, проявляющаяся в свободном оперировании понятиями, умении выделить существенные и несущественные его признаки, причинно-следственные связи;
- знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей;
- ответ формулируется в терминах науки, изложен литературным языком, логичен, доказателен, демонстрирует авторскую позицию студента;

- теоретические постулаты подтверждаются примерами из практики.

Тестирование

При определении уровня достижений студентов с помощью тестового контроля ответ считается правильным, если:

- в тестовом задании закрытой формы с выбором ответа выбран правильный ответ;
- по вопросам, предусматривающим множественный выбор правильных ответов, выбраны все правильные ответы;
 - в тестовом задании открытой формы дан правильный ответ;
- в тестовом задании на установление правильной последовательности установлена правильная последовательность;
- в тестовом задании на установление соответствия сопоставление произведено верно для всех пар.

При оценивании учитывается вес вопроса (максимальное количество баллов за правильный ответ устанавливается преподавателем в зависимости от сложности вопроса). Количество баллов за тест устанавливается посредством определения процентного соотношения набранного количества баллов к максимальному количеству баллов.

Критерии оценки;

До 60% правильных ответов – оценка «неудовлетворительно».

От 60 до 75% правильных ответов – оценка «удовлетворительно».

От 75 до 90% правильных ответов – оценка «хорошо».

Свыше 90% правильных ответов – оценка «отлично».

Вопросы и задания для устного опроса

При определении уровня достижений студентов при устном ответе необходимо обращать особое внимание на следующее:

- дан полный, развернутый ответ на поставленный вопрос;
- показана совокупность осознанных знаний об объекте, проявляющаяся в свободном оперировании понятиями, умении выделить существенные и несущественные его признаки, причинно-следственные связи;
- знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей;
- ответ формулируется в терминах науки, изложен литературным языком, логичен, доказателен, демонстрирует авторскую позицию студента;
 - теоретические постулаты подтверждаются примерами из практики.

Оценка за опрос определяется простым суммированием баллов:

Критерии оценки ответа:

Правильность ответа – 1 балл.

Всесторонность и глубина (полнота) ответа – 1 балл.

Наличие выводов – 1 балл.

Соблюдение норм литературной речи – 1 балл.

Владение профессиональной лексикой – 1 балл.

Итого: 5 баллов.

Практические задания

При определении уровня достижений студентов при выполнении практического задания необходимо обращать особое внимание на следующее:

- задание выполнено правильно;
- показана совокупность осознанных знаний об объекте, проявляющаяся в свободном оперировании понятиями, умении выделить существенные и несущественные его признаки, причинно-следственные связи;

- умение работать с объектом задания демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей;
- ответ формулируется в терминах науки, изложен литературным языком, логичен, доказателен, демонстрирует авторскую позицию студента;
 - выполнение задания теоретически обосновано.

Оценка за опрос определяется простым суммированием баллов:

Критерии оценки ответа:

Правильность выполнения задания – 1 балл.

Всесторонность и глубина (полнота) выполнения – 1 балл.

Наличие выводов – 1 балл.

Соблюдение норм литературной речи – 1 балл.

Владение профессиональной лексикой – 1 балл.

Итого: 5 баллов.

Контрольная работа

Виды контрольных работ: аудиторные, домашние, текущие, экзаменационные, письменные, графические, практические, фронтальные, индивидуальные. Система заданий письменных контрольных работ должна:

- выявлять знания студентов по определенной дисциплине (разделу дисциплины);
- выявлять понимание сущности изучаемых предметов и явлений, их закономерностей;
 - выявлять умение самостоятельно делать выводы и обобщения;
 - творчески использовать знания и навыки.

Требования к контрольной работе по тематическому содержанию соответствуют устному ответу.

Также контрольные работы могут включать перечень практических заданий.

Критерии оценки ответа:

Правильность ответа – 1 балл.

Всесторонность и глубина (полнота) ответа – 1 балл.

Наличие выводов – 1 балл.

Соблюдение норм литературной письменной речи – 1 балл.

Владение профессиональной лексикой – 1 балл.

Итого: 5 баллов.

9. Перечень основной и дополнительной учебной литературы Основная литература

- 1. Молекулярная биология [Электронный ресурс]:учебное пособие/ Т. А. Маскаева, М. В. Лабутина, Н. Д. Чегодаева; Морд. Гос. пед ин-т. Саранск, 2013. Режим доступа: http://library.mordgpi.ru/ProtectedView/Book/ViewBook/415
- 2. Коничев, А. С. Молекулярная биология [Текст] : учеб. для студентов учреждений высш. пед. проф. образования / А. С. Коничев, Г. А. Севастьянова. 4-е изд., перераб. и доп. М. : Академия, 2012. 400 с.
- 3. Жукова, А.Г. Молекулярная биология: учебник с упражнениями и задачами / А.Г. Жукова, Н.В. Кизиченко, Л.Г. Горохова. Москва ; Берлин : Директ-Медиа, 2018. 269 с. : ил., табл. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=488606. Библиогр. в кн. ISBN 978-5-4475-9674-3. DOI 10.23681/488606. Текст : электронный.

Дополнительная литература

1. Биохимия и молекулярная биология / авт.-сост. С.Ф. Андрусенко, Е.В. Денисенко; Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального

- образования «Северо-Кавказский федеральный университет». Ставрополь : СКФУ, 2015. 94 с. : табл. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=457873. Библиогр. в кн. Текст : электронный.
- 2. Молекулярная биология: лабораторный практикум / О.С. Корнеева, В.Н. Калаев, М.С. Нечаева, О.Ю. Гойкалова; науч. ред. О.С. Корнеева; Министерство образования и науки РФ, ФГБОУ ВПО «Воронежский государственный университет инженерных технологий». Воронеж: Воронежский государственный университет инженерных технологий, 2015. 52 с. : ил. Режим доступа: по подписке. URL: http://biblioclub.ru/index.php?page=book&id=336018. Библиогр. в кн. ISBN 978-5-00032-106-5. Текст: электронный.

10. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»:

- 1. https://genetics-info.ru/ (Информационный портал о генетике).
- 2. https://biomolecula.ru/ («Биомолекула», католог статей)

11. Методические указания обучающимся по освоению дисциплины (модуля)

При освоении материала дисциплины необходимо:

- спланировать и распределить время, необходимое для изучения дисциплины;
- конкретизировать для себя план изучения материала;
- ознакомиться с объемом и характером внеаудиторной самостоятельной работы для полноценного освоения каждой из тем дисциплины.

Сценарий изучения курса:

- проработайте каждую тему по предлагаемому ниже алгоритму действий;
- изучив весь материал, выполните итоговый тест, который продемонстрирует готовность к сдаче экзамена.

Алгоритм работы над каждой темой:

- изучите содержание темы вначале по лекционному материалу, а затем по другим источникам;
- прочитайте дополнительную литературу из списка, предложенного преподавателем;
- выпишите в тетрадь основные категории и персоналии по теме, используя лекционный материал или словари, что поможет быстро повторить материал при подготовке к экзамену;
- составьте краткий план ответа по каждому вопросу, выносимому на обсуждение на лабораторном занятии;
 - выучите определения терминов, относящихся к теме;
 - продумайте примеры и иллюстрации к ответу по изучаемой теме;
- подберите цитаты ученых, общественных деятелей, публицистов, уместные с точки зрения обсуждаемой проблемы;
 - продумывайте высказывания по темам, предложенным к лабораторному занятию.
 Рекомендации по работе с литературой:
- ознакомьтесь с аннотациями к рекомендованной литературе и определите основной метод изложения материала того или иного источника;
- составьте собственные аннотации к другим источникам на карточках, что поможет при подготовке рефератов, текстов речей, при подготовке к экзамену;
- выберите те источники, которые наиболее подходят для изучения конкретной темы.

12. Перечень информационных технологий

Реализация учебной программы обеспечивается доступом каждого студента к информационным ресурсам — электронной библиотеке и сетевым ресурсам Интернет. Для использования ИКТ в учебном процессе используется программное обеспечение, позволяющее осуществлять поиск, хранение, систематизацию, анализ и презентацию информации, экспорт информации на цифровые носители, организацию взаимодействия в реальной и виртуальной образовательной среде.

Индивидуальные результаты освоения дисциплины студентами фиксируются в электронной информационно-образовательной среде университета.

12.1 Перечень программного обеспечения

- 1. Microsoft Windows 7 Pro
- 2. Microsoft Office Professional Plus 2010
- 3. 1С: Университет ПРОФ

12.2 Перечень информационных справочных систем (обновление выполняется еженедельно)

- 1. Информационно-правовая система «ГАРАНТ» (http://www.garant.ru)
- 2. Справочная правовая система «КонсультантПлюс» (http://www.consultant.ru)

12.3 Перечень современных профессиональных баз данных

- 1. Профессиональная база данных «Открытые данные Министерства образования и науки РФ» (http://xn----8sblcdzzacvuc0jbg.xn--80abucjiibhv9a.xn--p1ai/opendata/)
- 2. Профессиональная база данных «Портал открытых данных Министерства культуры Российской Федерации» (http://opendata.mkrf.ru/)
 - 3. Электронная библиотечная система Znanium.com(http://znanium.com/)
 - 4. Научная электронная библиотека e-library(http://www.e-library.ru/)

13. Материально-техническое обеспечение дисциплины (модуля)

Для проведения аудиторных занятий необходим стандартный набор специализированной учебной мебели и учебного оборудования, а также мультимедийное оборудование для демонстрации презентаций на лекциях. Для проведения практических занятий, а также организации самостоятельной работы студентов необходим компьютерный класс с рабочими местами, обеспечивающими выход в Интернет.

При изучении дисциплины используется интерактивный комплекс Flipbox для проведения презентаций и видеоконференций, система iSpring в процессе проверки знаний по электронным тест-тренажерам.

Индивидуальные результаты освоения дисциплины студентами фиксируются в электронной информационно-образовательной среде университета.

Реализация учебной программы обеспечивается доступом каждого студента к информационным ресурсам — электронной библиотеке и сетевым ресурсам Интернет. Для использования ИКТ в учебном процессе необходимо наличие программного обеспечения, позволяющего осуществлять поиск информации в сети Интернет, систематизацию, анализ и презентацию информации, экспорт информации на цифровые носители.

Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (№ 15)

Помещение укомплектовано специализированной мебелью и техническими средствами обучения.

Основное оборудование:

Наборы демонстрационного оборудования: автоматизированное рабочее место в составе (учебный мультимедийный комплекс трибуна, проектор, лазерная указка, маркерная доска); колонки SVEN.

Учебно-наглядные пособия:

Презентации.

Лицензионное программное обеспечение:

- Microsoft Windows 7 Pro
- Microsoft Office Professional Plus 2010
- 1С: Университет ПРОФ

Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (№ 28).

Лаборатория генетики, физиологии растений и теории эволюции.

Помещение укомплектовано специализированной мебелью и техническими средствами обучения.

Основное оборудование:

Наборы демонстрационного оборудования: автоматизированное рабочее место преподавателя в составе (компьютер, клавиатура, сетевой фильтр, проектор, крепление, экран).

Лабораторное оборудование: комплект Биологическая микролаборатория.

Учебно-наглядные пособия:

Презентации.

Лицензионное программное обеспечение:

- Microsoft Windows 7 Pro
- Microsoft Office Professional Plus 2010
- 1С: Университет ПРОФ

Помещение для самостоятельной работы. (№ 101)

Читальный зал.

Помещение укомплектовано специализированной мебелью и техническими средствами обучения.

Основное оборудование:

Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета (компьютер 10 шт., проектор с экраном 1 шт., многофункциональное устройство 1 шт., принтер 1 шт.)

Учебно-наглядные пособия:

Учебники и учебно-методические пособия, периодические издания, справочная литература, стенды с тематическими выставками.

Лицензионное программное обеспечение:

- Microsoft Windows 7 Pro
- Microsoft Office Professional Plus 2010
- 1С: Университет ПРОФ